Some identities for degenerate complete and incomplete r-Bell polynomials
نویسندگان
چکیده
منابع مشابه
Complete Bell polynomials and new generalized identities for polynomials of higher order
The relations between the Bernoulli and Eulerian polynomials of higher order and the complete Bell polynomials are found that lead to new identities for the Bernoulli and Eulerian polynomials and numbers of higher order. General form of these identities is considered and generating function for polynomials satisfying this general identity is found.
متن کاملSome combinatorial formulas for the partial r-Bell polynomials
The partial r-Bell polynomials generalize the classical partial Bell polynomials (coinciding with them when r = 0) by assigning a possibly different set of weights to the blocks containing the r smallest elements of a partition no two of which are allowed to belong to the same block. In this paper, we study the partial r-Bell polynomials from a combinatorial standpoint and derive several new fo...
متن کاملSome identities of degenerate Fubini polynomials arising from differential equations
Recently, Kim et al. have studied degenerate Fubini polynomials in [T. Kim, D. V. Dolgy, D. S. Kim, J. J. Seo, J. Nonlinear Sci. Appl., 9 (2016), 2857–2864]. Jang and Kim presented some identities of Fubini polynomials arising from differential equations in [G.-W. Jang, T. Kim, Adv. Studies Contem. Math., 28 (2018), to appear]. In this paper, we drive differential equations from the generating ...
متن کاملSome Identities for a Sequence of Unnamed Polynomials Connected with the Bell Polynomials
In the paper, using two inversion theorems for the Stirling numbers and binomial coefficients, employing properties of the Bell polynomials of the second kind, and utilizing a higher order derivative formula for the ratio of two differentiable functions, the authors present two explicit formulas, a determinantal expression, and a recursive relation for a sequence of unnamed polynomials, derive ...
متن کاملIdentities on Bell polynomials and Sheffer sequences
In this paper, we study exponential partial Bell polynomials and Sheffer sequences. Two new characterizations of Sheffer sequences are presented, which indicate the relations between Sheffer sequences and Riordan arrays. Several general identities involving Bell polynomials and Sheffer sequences are established, which reduce to some elegant identities for associated sequences and cross sequences.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Inequalities and Applications
سال: 2020
ISSN: 1029-242X
DOI: 10.1186/s13660-020-2298-x